Renormalized topological field theory and the Euler characteristic of $Out(F_n)$

Michael Borinsky, Nikhef January 28, Radboud Universiteit

joint work with Karen Vogtmann
arXiv:1907.03543

Introduction I: Groups

ullet Take a group G

- Take a group G
- An automorphism of G, $\rho \in Aut(G)$ is a bijection

$$\rho: G \to G$$
 such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

- Take a group G
- An automorphism of G, $\rho \in Aut(G)$ is a bijection

$$\rho: G \to G$$
 such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

• Normal subgroup: $Inn(G) \triangleleft Aut(G)$, the inner automorphisms.

1

- Take a group G
- An automorphism of G, $\rho \in Aut(G)$ is a bijection

$$\rho: G \to G$$
 such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

- Normal subgroup: $Inn(G) \triangleleft Aut(G)$, the inner automorphisms.
- We have, $\rho_h \in \text{Inn}(G)$

$$\rho_h: G \to G,$$
$$g \mapsto h^{-1}gh$$

for each $h \in G$.

1

- Take a group G
- An automorphism of G, $\rho \in Aut(G)$ is a bijection

$$\rho: G \to G$$
 such that $\rho(x \cdot y) = \rho(x) \cdot \rho(y)$ for all $x, y \in G$

- Normal subgroup: $Inn(G) \triangleleft Aut(G)$, the inner automorphisms.
- We have, $\rho_h \in \text{Inn}(G)$

$$\rho_h: G \to G,$$
$$g \mapsto h^{-1}gh$$

for each $h \in G$.

• Outer automorphisms: Out(G) = Aut(G) / Inn(G)

1

Automorphisms of the free group

• Consider the free group with *n* generators

$$F_n = \langle a_1, \ldots, a_n \rangle$$

$$\mathsf{E.g.}\ a_1a_3^{-5}a_2\in F_n$$

Automorphisms of the free group

• Consider the free group with *n* generators

$$F_n = \langle a_1, \ldots, a_n \rangle$$

E.g.
$$a_1 a_3^{-5} a_2 \in F_n$$

• The group $Out(F_n)$ is our main object of interest.

Some properties of $Out(F_n)$

Generated by

$$a_1\mapsto a_1a_2 \qquad a_2\mapsto a_2 \qquad a_3\mapsto a_3 \qquad \dots$$
 and $a_1\mapsto a_1^{-1} \qquad a_2\mapsto a_2 \qquad a_3\mapsto a_3 \qquad \dots$

and permutations of the letters.

Some properties of $Out(F_n)$

Generated by

$$a_1\mapsto a_1a_2 \qquad a_2\mapsto a_2 \qquad a_3\mapsto a_3 \qquad \dots$$
 and $a_1\mapsto a_1^{-1} \qquad a_2\mapsto a_2 \qquad a_3\mapsto a_3 \qquad \dots$

and permutations of the letters.

• The fundamental group of a graph is always a free group,

$$\operatorname{Out}(F_n) = \operatorname{Out}(\pi_1(\Gamma))$$

for a connected graph Γ with n independent cycles.

Mapping class group

 Another example of an outer automorphism group: the mapping class group

Mapping class group

- Another example of an outer automorphism group: the mapping class group
- The group of homeomorphisms of a closed, connected and orientable surface S_g of genus g up to isotopies

$$MCG(S_g) := Out(\pi_1(S_g))$$

Example: Mapping class group of the torus

$$\mathsf{MCG}(\mathbb{T}^2) = \mathsf{Out}(\pi_1(\mathbb{T}^2))$$

The group of homeomorphisms $\mathbb{T}^2 \to \mathbb{T}^2$ up to an isotopy:

Introduction II: Spaces

How to study such groups?

How to study groups such as MCG(S) or $Out(F_n)$?

How to study such groups?

How to study groups such as MCG(S) or $Out(F_n)$?

Main idea

Realize G as symmetries of some geometric object.

```
Due to Stallings, Thurston, Gromov, ... (1970-)
```

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

- \Rightarrow A point in Teichmüller space T(S) is a pair, (X, μ)
 - A Riemann surface X.
 - A marking: a homeomorphism $\mu: S \to X$.

For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

- \Rightarrow A point in Teichmüller space T(S) is a pair, (X, μ)
 - A Riemann surface X.
 - A marking: a homeomorphism $\mu: S \to X$.

MCG(S) acts on T(S) by composing to the marking:

$$(X,\mu)\mapsto (X,\mu\circ g^{-1})$$
 for some $g\in \mathsf{MCG}(S)$.

Idea: Mimic previous construction for $Out(F_n)$. Culler, Vogtmann (1986)

Idea: Mimic previous construction for $Out(F_n)$. Culler, Vogtmann (1986)
Let R_n be the rose with n petals.

Idea: Mimic previous construction for $Out(F_n)$. Culler, Vogtmann (1986)
Let R_n be the rose with n petals.

- \Rightarrow A point in Outer space \mathcal{O}_n is a pair, (G, μ)
 - A connected graph G with a length assigned to each edge.
 - A marking: a homotopy $\mu: R_n \to G$.

Idea: Mimic previous construction for $Out(F_n)$.

Culler, Vogtmann (1986)

Let R_n be the rose with n petals.

- \Rightarrow A point in Outer space \mathcal{O}_n is a pair, (G, μ)
 - A connected graph G with a length assigned to each edge.
 - A marking: a homotopy $\mu: R_n \to G$.

 $\operatorname{Out}(F_n)$ acts on \mathcal{O}_n by composing to the marking:

$$(\Gamma, \mu) \mapsto (\Gamma, \mu \circ g^{-1})$$
 for some $g \in \text{Out}(F_n) = \text{Out}(\pi_1(R_n))$.

 \mathcal{O}_2

Put picture of Outer space here

Examples of applications of Outer space

- The group $Out(F_n)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics

Examples of applications of Outer space

- The group $Out(F_n)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics :

Scalar QFT \sim Integrals over \mathcal{O}_n / Out(F_n)

Examples of applications of Outer space

- The group $Out(F_n)$
- Moduli spaces of punctured surfaces
- Tropical curves
- Invariants of symplectic manifolds
- Classical modular forms
- (Mathematical) physics :

Scalar QFT \sim Integrals over \mathcal{O}_n / Out(F_n)

analogous to

2D Quantum gravity \sim Integral over T(S)/MCG(S)

Moduli spaces

The quotient space \$\mathcal{G}_n := \mathcal{O}_n \setminus \text{Out}(F_n)\$ is called the moduli space of graphs.

Moduli spaces

- The quotient space $G_n := O_n / Out(F_n)$ is called the moduli space of graphs.
- Its cousin $\mathcal{M}_g = T(S_g)/\operatorname{MCG}(S_g)$ is the moduli space of curves.

Moduli spaces

- The quotient space $G_n := O_n / Out(F_n)$ is called the moduli space of graphs.
- Its cousin $\mathcal{M}_g = T(S_g)/\operatorname{MCG}(S_g)$ is the moduli space of curves.
- Both can be used to study the respective groups.

Summary of the respective groups and spaces

	$MCG(S_g)$	$\operatorname{Out}(F_n)$
acts freely and properly on	Teichmüller space $\mathcal{T}(\mathcal{S}_g)$	Outer space \mathcal{O}_n
Quotient X/G	Moduli space of curves \mathcal{M}_{g}	Moduli space of graphs \mathcal{G}_n

Invariants

Algebraic invariants

• $H_{\bullet}(\text{Out}(F_n); \mathbb{Q}) \simeq H_{\bullet}(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_{\bullet}(\mathcal{G}_n; \mathbb{Q}),$ as \mathcal{O}_n is contractible Culler, Vogtmann (1986).

Algebraic invariants

- $H_{\bullet}(\text{Out}(F_n); \mathbb{Q}) \simeq H_{\bullet}(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_{\bullet}(\mathcal{G}_n; \mathbb{Q}),$ as \mathcal{O}_n is contractible Culler, Vogtmann (1986).
- \Rightarrow Study Out(F_n) using \mathcal{G}_n !

Algebraic invariants

- $H_{\bullet}(\text{Out}(F_n); \mathbb{Q}) \simeq H_{\bullet}(\mathcal{O}_n / \text{Out}(F_n); \mathbb{Q}) = H_{\bullet}(\mathcal{G}_n; \mathbb{Q}),$ as \mathcal{O}_n is contractible Culler, Vogtmann (1986).
- \Rightarrow Study Out(F_n) using \mathcal{G}_n !
 - One simple invariant: Euler characteristic

Consider the abelization map $F_n \to \mathbb{Z}^n$.

Consider the abelization map $F_n \to \mathbb{Z}^n$.

 \Rightarrow Induces a group homomorphism

$$\operatorname{Out}(F_n) \to \operatorname{Out}(\mathbb{Z}^n)$$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$\operatorname{Out}(F_n) o \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})}$$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

 \Rightarrow Induces a group homomorphism

$$1 o {\mathcal T}_n o \operatorname{\mathsf{Out}}(F_n) o \underbrace{\operatorname{\mathsf{Out}}({\mathbb Z}^n)}_{=\operatorname{\mathsf{GL}}(n,{\mathbb Z})} o 1$$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 o {\mathcal T}_n o \operatorname{\mathsf{Out}}({\mathcal F}_n) o \underbrace{\operatorname{\mathsf{Out}}({\mathbb Z}^n)}_{=\operatorname{\mathsf{GL}}(n,{\mathbb Z})} o 1$$

• \mathcal{T}_n the 'non-abelian' part of $Out(F_n)$ is interesting.

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to \mathcal{T}_n \to \operatorname{Out}(F_n) \to \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})} \to 1$$

- \mathcal{T}_n the 'non-abelian' part of $Out(F_n)$ is interesting.
- By the short exact sequence above

$$\chi(\mathsf{Out}(F_n)) = \chi(\mathsf{GL}(n,\mathbb{Z})) \, \chi(\mathcal{T}_n)$$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to {\mathcal T}_n \to \operatorname{Out}(F_n) \to \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})} \to 1$$

- \mathcal{T}_n the 'non-abelian' part of $Out(F_n)$ is interesting.
- By the short exact sequence above

$$\chi(\mathsf{Out}(F_n)) = \underbrace{\chi(\mathsf{GL}(n,\mathbb{Z}))}_{=0} \chi(\mathcal{T}_n)$$

Consider the abelization map $F_n \to \mathbb{Z}^n$.

⇒ Induces a group homomorphism

$$1 \to {\mathcal T}_n \to \operatorname{Out}(F_n) \to \underbrace{\operatorname{Out}(\mathbb{Z}^n)}_{=\operatorname{GL}(n,\mathbb{Z})} \to 1$$

- \mathcal{T}_n the 'non-abelian' part of $Out(F_n)$ is interesting.
- By the short exact sequence above

$$\chi(\mathsf{Out}(F_n)) = \underbrace{\chi(\mathsf{GL}(n,\mathbb{Z}))}_{=0} \chi(\mathcal{T}_n)$$

 $\Rightarrow \mathcal{T}_n$ does not have finitely-generated homology if $\chi(\operatorname{Out}(F_n)) \neq 0$.

Conjecture Smillie-Vogtmann (1987)

$$\chi(\operatorname{Out}(F_n)) \neq 0$$
 for all $n \geq 2$ and $|\chi(\operatorname{Out}(F_n))|$ grows exponentially for $n \to \infty$.

based on initial computations by Smillie-Vogtmann (1987) up to $n \le 11$. Later strengthened by Zagier (1989) up to $n \le 100$.

Conjecture Smillie-Vogtmann (1987)

$$\chi(\operatorname{Out}(F_n)) \neq 0$$
 for all $n \geq 2$

and $|\chi(\operatorname{Out}(F_n))|$ grows exponentially for $n \to \infty$.

based on initial computations by Smillie-Vogtmann (1987) up to $n \le 11$. Later strengthened by Zagier (1989) up to $n \le 100$.

Conjecture Magnus (1934)

 \mathcal{T}_n is not finitely presentable.

Conjecture Smillie-Vogtmann (1987)

$$\chi(\operatorname{Out}(F_n)) \neq 0$$
 for all $n \geq 2$

and $|\chi(\operatorname{Out}(F_n))|$ grows exponentially for $n \to \infty$.

based on initial computations by Smillie-Vogtmann (1987) up to $n \le 11$. Later strengthened by Zagier (1989) up to $n \le 100$.

Conjecture Magnus (1934)

 \mathcal{T}_n is not finitely presentable.

In topological terms, i.e. $\dim(H_2(\mathcal{T}_n)) = \infty$,

which implies that \mathcal{T}_n does not have finitely-generated homology.

Conjecture Smillie-Vogtmann (1987)

$$\chi(\operatorname{Out}(F_n)) \neq 0$$
 for all $n \geq 2$

and $|\chi(\operatorname{Out}(F_n))|$ grows exponentially for $n \to \infty$.

based on initial computations by Smillie-Vogtmann (1987) up to $n \le 11$. Later strengthened by Zagier (1989) up to $n \le 100$.

Conjecture Magnus (1934)

 \mathcal{T}_n is not finitely presentable.

In topological terms, i.e. $\dim(H_2(\mathcal{T}_n)) = \infty$,

which implies that \mathcal{T}_n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

 \mathcal{T}_n does not have finitely-generated homology.

Results: $\chi(\text{Out}(F_n)) \neq 0$

$$\chi(\operatorname{Out}(F_n)) < 0$$
 for all $n \geq 2$

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$

$$\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$$

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$

$$\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$$

which settles the initial conjecture by

Smillie-Vogtmann (1987). Immediate questions:

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$

$$\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

⇒ Huge amount of unstable homology in odd dimensions.

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$

$$\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

- ⇒ Huge amount of unstable homology in odd dimensions.
 - Only one odd-dimensional class known Bartholdi (2016).

$$\chi(\operatorname{Out}(F_n)) < 0 \text{ for all } n \ge 2$$

$$\chi(\operatorname{Out}(F_n)) \sim -\frac{1}{\sqrt{2\pi}} \frac{\Gamma(n-3/2)}{\log^2 n} \text{ as } n \to \infty.$$

which settles the initial conjecture by Smillie-Vogtmann (1987). Immediate questions:

- ⇒ Huge amount of unstable homology in odd dimensions.
 - Only one odd-dimensional class known Bartholdi (2016).
 - Where does all this homology come from?

Theorem B MB-Vogtmann (2019)

$$\sqrt{2\pi}e^{-N}N^N\sim\sum_{k\geq 0}a_k(-1)^k\Gamma(N+1/2-k) ext{ as } N o\infty$$
 where $\sum_{k\geq 0}a_kz^k=\exp\left(\sum_{n\geq 0}\chi(\operatorname{Out}(F_{n+1}))z^n
ight)$

Theorem B MB-Vogtmann (2019)

$$\sqrt{2\pi}e^{-N}N^N\sim\sum_{k\geq 0}a_k(-1)^k\Gamma(N+1/2-k) ext{ as } N o\infty$$
 where $\sum_{k\geq 0}a_kz^k=\exp\left(\sum_{n\geq 0}\chi(\operatorname{Out}(F_{n+1}))z^n
ight)$

 $\Rightarrow \chi(\text{Out}(F_n))$ are the coefficients of an asymptotic expansion.

Theorem B MB-Vogtmann (2019)

$$\sqrt{2\pi}e^{-N}N^N\sim\sum_{k\geq 0}a_k(-1)^k\Gamma(N+1/2-k) \ \ ext{as} \ \ N o\infty$$
 where $\sum_{k\geq 0}a_kz^k=\exp\left(\sum_{n\geq 0}\chi(\operatorname{Out}(F_{n+1}))z^n
ight)$

- $\Rightarrow \chi(\text{Out}(F_n))$ are the coefficients of an asymptotic expansion.
 - An analytic argument is needed to prove Theorem A from Theorem B.

Theorem B MB-Vogtmann (2019)

$$\sqrt{2\pi}e^{-N}N^N\sim\sum_{k\geq 0}a_k(-1)^k\Gamma(N+1/2-k) \ ext{as } N o\infty$$
 where $\sum_{k\geq 0}a_kz^k=\exp\left(\sum_{n\geq 0}\chi(\operatorname{Out}(F_{n+1}))z^n
ight)$

- $\Rightarrow \chi(Out(F_n))$ are the coefficients of an asymptotic expansion.
 - An analytic argument is needed to prove Theorem A from Theorem B.
 - In this talk: Focus on proof of Theorem B

Analogy to the mapping class group

Similar result for the mapping class group/moduli space of curves:

Similar result for the mapping class group/moduli space of curves:

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)}$$
 $g \ge 2$

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)}$$
 $g \ge 2$

• Original proof by Harer and Zagier in 1986.

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)}$$
 $g \ge 2$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)}$$
 $g \ge 2$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

$$\chi(\mathcal{M}_g) = \chi(\mathsf{MCG}(S_g)) = \frac{B_{2g}}{4g(g-1)}$$
 $g \ge 2$

- Original proof by Harer and Zagier in 1986.
- Alternative proof using topological field theory (TFT) by Penner (1988).
- Simplified proof by Kontsevich (1992) based on TFT's.
- \Rightarrow Kontsevich's proof served as a blueprint for $\chi(\text{Out}(F_n))$.

of the Harer-Zagier formula

Sketch of Kontsevich's TFT proof

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can 'forget one puncture':

$$\mathsf{MCG}(S_{g,n+1}) \to \mathsf{MCG}(S_{g,n})$$

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can 'forget one puncture':

$$1 \to \pi_1(S_{g,n}) \to \mathsf{MCG}(S_{g,n+1}) \to \mathsf{MCG}(S_{g,n}) \to 1$$

$$\Rightarrow \chi(\mathsf{MCG}(S_{g,n+1})) = \chi(\mathcal{M}_{g,n+1}) = \chi(\pi_1(S_{g,n})) \chi(\mathcal{M}_{g,n})$$

Generalize from \mathcal{M}_g to $\mathcal{M}_{g,n}$, the moduli space of surfaces of genus g and n punctures.

We can 'forget one puncture':

$$1 \to \pi_1(S_{g,n}) \to \mathsf{MCG}(S_{g,n+1}) \to \mathsf{MCG}(S_{g,n}) \to 1$$

$$\Rightarrow \chi(\mathsf{MCG}(S_{g,n+1})) = \chi(\mathcal{M}_{g,n+1}) = \underbrace{\chi(\pi_1(S_{g,n}))}_{=2-2g-n} \chi(\mathcal{M}_{g,n})$$

ullet Use a combinatorial model for $\mathcal{M}_{g,n}$

- ullet Use a combinatorial model for $\mathcal{M}_{g,n}$
- ⇒ Ribbon graphs Penner (1986)

- ullet Use a combinatorial model for $\mathcal{M}_{g,n}$
- ⇒ Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial\Gamma) = n$
- $\chi(\Gamma) = |V_{\Gamma}| |E_{\Gamma}| = 2 2g n$.

- ullet Use a combinatorial model for $\mathcal{M}_{g,n}$
- ⇒ Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial\Gamma) = n$
- $\chi(\Gamma) = |V_{\Gamma}| |E_{\Gamma}| = 2 2g n$.
- \Rightarrow Γ can be interpreted as a surface of genus g with n punctures.

- ullet Use a combinatorial model for $\mathcal{M}_{g,n}$
- ⇒ Ribbon graphs Penner (1986)

Every point in $\mathcal{M}_{g,n}$ can be associated with a ribbon graph Γ such that

- Γ has n boundary components: $h_0(\partial\Gamma) = n$
- $\chi(\Gamma) = |V_{\Gamma}| |E_{\Gamma}| = 2 2g n$.
- \Rightarrow Γ can be interpreted as a surface of genus g with n punctures.

$$\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$= \sum_{\substack{\Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2 - 2g - n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut}\Gamma|}$$

$$\chi(\mathcal{M}_{g,n}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$= \sum_{\substack{\Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2 - 2g - n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut}\Gamma|}$$

Used by Penner (1988) to calculate $\chi(\mathcal{M}_g)$ with Matrix models.

Kontsevich's simplification:

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n}$$

Kontsevich's simplification:

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{\substack{g,n \text{ ribbon graphs } \Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2-2g-n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut} \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}$$

Kontsevich's simplification:

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{g,n} \sum_{\substack{\text{ribbon graphs } \Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2-2g-n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut }\Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}$$
$$= \sum_{\text{graphs } G} \frac{(-1)^{|V_{G}|}}{|\operatorname{Aut }G|} z^{\chi(G)}$$

Kontsevich's simplification:

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{g,n} \sum_{\substack{\text{ribbon graphs } \Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2-2g-n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut }\Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}$$
$$= \sum_{\text{graphs } G} \frac{(-1)^{|V_G|}}{|\operatorname{Aut }G|} z^{\chi(G)}$$

This is the perturbative series of a simple TFT:

$$= \log \left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx \right)$$

Kontsevich's simplification:

$$\sum_{g,n} \frac{\chi(\mathcal{M}_{g,n})}{n!} z^{2-2g-n} = \sum_{g,n} \sum_{\substack{\text{ribbon graphs } \Gamma \\ h_0(\partial\Gamma) = n \\ \chi(\Gamma) = 2-2g-n}} \frac{(-1)^{|V_{\Gamma}|}}{|\operatorname{Aut} \Gamma|} \frac{1}{n!} z^{\chi(\Gamma)}$$
$$= \sum_{\text{graphs } G} \frac{(-1)^{|V_G|}}{|\operatorname{Aut} G|} z^{\chi(G)}$$

This is the perturbative series of a simple TFT:

$$= \log \left(\frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)} dx \right)$$

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

$$=\sum_{k>1}\frac{\zeta(-k)}{-k}z^{-k}$$

Last step of Kontsevich's proof

$$\sum_{\substack{g,n \\ 2-2g-n=k}} \frac{\chi(\mathcal{M}_{g,n})}{n!} = \frac{B_{k+1}}{k(k+1)}$$

Last step of Kontsevich's proof

$$\sum_{\substack{g,n\\2-2g-n=k}}\frac{\chi(\mathcal{M}_{g,n})}{n!}=\frac{B_{k+1}}{k(k+1)}$$

⇒ recover Harer-Zagier formula using the identity

$$\chi(\mathcal{M}_{g,n+1}) = (2 - 2g - n)\chi(\mathcal{M}_{g,n})$$

Analogous proof strategy for

 $\chi(\operatorname{Out}(F_n))$ using renormalized TFTs

Generalize from $\operatorname{Out}(F_n)$ to $A_{n,s}$ and from \mathcal{O}_n to $\mathcal{O}_{n,s}$, Outer space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Generalize from $\operatorname{Out}(F_n)$ to $A_{n,s}$ and from \mathcal{O}_n to $\mathcal{O}_{n,s}$, Outer space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

$$1 \to F_n \to A_{n,s} \to A_{n,s-1} \to 1$$

ullet Use a combinatorial model for $\mathcal{G}_{n,s}$

ullet Use a combinatorial model for $\mathcal{G}_{n,s}$

⇒ graphs with a forest Smillie-Vogtmann (1987):

- ullet Use a combinatorial model for ${\mathcal G}_{n,s}$
- ⇒ graphs with a forest Smillie-Vogtmann (1987):

A point in $\mathcal{G}_{n,s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

- ullet Use a combinatorial model for ${\mathcal G}_{n,s}$
- ⇒ graphs with a forest Smillie-Vogtmann (1987):

A point in $\mathcal{G}_{n,s}$ can be associated with a pair of a graph G and a forest $f \subset G$.

$$\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$\chi(A_{n,s}) = \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|}$$

$$\begin{split} \chi(A_{n,s}) &= \sum_{\sigma} \frac{(-1)^{\dim(\sigma)}}{|\operatorname{Stab}(\sigma)|} \\ &= \sum_{\substack{\operatorname{graphs } G \\ \operatorname{with } s \text{ legs} \\ \operatorname{rank}(\pi_1(G)) = n}} \sum_{\substack{\operatorname{forests } f \subset G}} \frac{(-1)^{|E_f|}}{|\operatorname{Aut } G|} \end{split}$$

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \sum_{\text{forests } f \subset G} (-1)^{|E_f|}$$

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \underbrace{\sum_{\text{forests } f \subset G} (-1)^{|E_f|}}_{=:\tau(G)}$$

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \underbrace{\sum_{\text{forests } f \subset G} (-1)^{|E_f|}}_{=:\tau(G)}$$

au fulfills the identities $au(\emptyset)=1$ and

$$\sum_{\substack{g\subset G\\g\text{ bridgeless}}}\tau(g)(-1)^{|E_{G/g}|}=0\qquad\text{ for all }G\neq\emptyset$$

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \underbrace{\sum_{\substack{\text{forests } f \subset G \\ =: \tau(G)}} (-1)^{|E_f|}}_{=:\tau(G)}$$

au fulfills the identities $au(\emptyset)=1$ and

$$\sum_{\substack{g\subset G\\g\text{ bridgeless}}}\tau(g)(-1)^{|E_{G/g}|}=0\qquad\text{ for all }G\neq\emptyset$$

 $\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

Renormalized TFT interpretation MB-Vogtmann (2019):

$$\chi(A_{n,s}) = \sum_{\substack{\text{graphs } G \\ \text{with } s \text{ legs} \\ \text{rank}(\pi_1(G)) = n}} \frac{1}{|\operatorname{Aut } G|} \underbrace{\sum_{\substack{\text{forests } f \subset G \\ =: \tau(G)}} (-1)^{|E_f|}}_{=:\tau(G)}$$

au fulfills the identities $au(\emptyset)=1$ and

$$\sum_{\substack{g\subset G\\g\text{ bridgeless}}}\tau(g)(-1)^{|E_{G/g}|}=0\qquad\text{ for all }G\neq\emptyset$$

 $\Rightarrow \tau$ is an inverse of a character in a Connes-Kreimer-type renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants $\chi(A_{n,s})$ are encoded in a renormalized TFT.

Let
$$T(z,x) = \sum_{n,s \ge 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!}$$

Let
$$T(z,x) = \sum_{n,s \ge 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!}$$
 then
$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} dx$$

Let
$$T(z,x) = \sum_{n,s \ge 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!}$$
 then
$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} dx$$

Using the short exact sequence, $1 \to F_n \to A_{n,s} \to A_{n,s-1} \to 1$ results in the action

$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^{x}) + \frac{x}{2} + T(-ze^{x})} dx$$

where
$$T(z) = \sum_{n \geq 1} \chi(\operatorname{Out}(F_{n+1}))z^{-n}$$
.

Let
$$T(z,x) = \sum_{n,s \ge 0} \chi(A_{n,s}) z^{1-n} \frac{x^s}{s!}$$
 then
$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{T(z,x)} dx$$

Using the short exact sequence, $1 \to F_n \to A_{n,s} \to A_{n,s-1} \to 1$ results in the action

$$1 = \frac{1}{\sqrt{2\pi z}} \int_{\mathbb{R}} e^{z(1+x-e^x)+\frac{x}{2}+T(-ze^x)} dx$$

where
$$T(z) = \sum_{n \geq 1} \chi(\operatorname{Out}(F_{n+1}))z^{-n}$$
.

This gives the implicit result in Theorem B.

Short summary:

Short summary:

• $\chi(\operatorname{Out}(F_n)) \neq 0$

Short summary:

• $\chi(\operatorname{Out}(F_n)) \neq 0$

Open questions:

• The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?

Short summary:

• $\chi(\operatorname{Out}(F_n)) \neq 0$

Open questions:

- The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd

Short summary:

• $\chi(\operatorname{Out}(F_n)) \neq 0$

Open questions:

- The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between MCG(S_g) and Out(F_n)? Obvious candidate: Koszul duality

Short summary:

• $\chi(\operatorname{Out}(F_n)) \neq 0$

Open questions:

- The rapid growth of $\chi(\text{Out}(F_n))$ indicates that there is much unstable homology. What generates it?
- Missing analysis of the naive integral Euler characteristic: tbd
- Can the TFT analysis be explained with a duality between MCG(S_g) and Out(F_n)? Obvious candidate: Koszul duality
- Can renormalized TFT arguments also be used for other groups? For instance RAAGs.