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Automorphisms of groups

e Take a group G
e An automorphism of G, p € Aut(G) is a bijection
p:G—G
such that p(x - y) = p(x) - p(y) for all x,y € G

Normal subgroup: Inn(G) < Aut(G), the inner automorphisms.
We have, pj € Inn(G)

pn G — G,
g— h~lgh

for each h € G.
e Outer automorphisms: Out(G) = Aut(G)/ Inn(G)
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Automorphisms of the free group

e Consider the free group with n generators
Fn: <a1,...,an)

E.g. ala§5ag e F,

e The group Out(F,) is our main object of interest.
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Some properties of Out(F,)

e Generated by

al +r aiar ar — ar as +— as

and a1 — a;l a — a» az — as

and permutations of the letters.

e The fundamental group of a graph is always a free group,
Out(F,) = Out(m1(T))

for a connected graph I' with n independent cycles.
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Mapping class group

e Another example of an outer automorphism group:

the mapping class group

e The group of homeomorphisms of a closed, connected and

orientable surface S, of genus g up to isotopies

MCG(S,) := Out(m1(Sz))



Example: Mapping class group of the torus

MCG(T?) = Out(r1(T?))

The group of homeomorphisms T2 — T2 up to an isotopy:
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How to study such groups?

How to study groups such as MCG(S) or Out(F,)?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, ... (1970-)
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Let S be a closed, connected and orientable surface.
= A point in Teichmiiller space T(S) is a pair, (X, )
e A Riemann surface X.

e A marking: a homeomorphism g : S — X.

MCG(S) acts on T(S) by composing to the marking:
(X, ) = (X, ppog™t) for some g € MCG(S).
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For Out(F,): Outer space

Idea: Mimic previous construction for Out(F,).
Culler, Vogtmann (1986)
Let R, be the rose with n petals.

= A point in Outer space O, is a pair, (G, )
e A connected graph G with a length assigned to each edge.
e A marking: a homotopy 11 : R, — G.

Out(F,) acts on O, by composing to the marking:
(T, 1) — (T, pwog™t) for some g € Out(F,) = Out(r1(Ry)).



Put picture of Quter space here
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Examples of applications of Outer space

e The group Out(F,)

e Moduli spaces of punctured surfaces
e Tropical curves

e Invariants of symplectic manifolds

e Classical modular forms

e (Mathematical) physics :
Scalar QFT ~ Integrals over O, / Out(F,)

analogous to

2D Quantum gravity ~ Integral overT(S)/ MCG(S)

10



Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli
space of graphs.
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Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli
space of graphs.

e Its cousin Mgz = T(S;z)/ MCG(S;) is the moduli space of
curves.
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Moduli spaces

e The quotient space G, := O, / Out(F,) is called the moduli
space of graphs.

e Its cousin Mgz = T(S;z)/ MCG(S;) is the moduli space of
curves.

e Both can be used to study the respective groups.
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Summary of the respective groups and spaces

MCG(Sg) Out(F,)
acts freely and Teichmiiller space Outer space
properly on T(Sg) On

Moduli space of curves | Moduli space of graphs

Quotient X/G
uotient X/ M, G

12
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Algebraic invariants

o He(Out(Fp); Q) =~ He(Op / Out(Fp); Q) = He(Gn; Q),
as O, is contractible Culler, Vogtmann (1986).
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Algebraic invariants

o He(Out(Fp); Q) =~ He(Op / Out(Fp); Q) = He(Gn; Q),
as O, is contractible Culler, Vogtmann (1986).

= Study Out(F,) using G,!

e One simple invariant: Euler characteristic
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Further motivation to look at Euler characteristic of Out(F,)

Consider the abelization map F, — Z".
= Induces a group homomorphism

1—T,— Out(F,) = Out(Z") — 1
——
=GL(n,Z)

e T, the ‘non-abelian’ part of Out(F,) is interesting.
e By the short exact sequence above
X(Out(Fr)) = x(GL(n, Z)) x(T»)
=0
= T, does not have finitely-generated homology if

x(Out(F,)) # 0.

14
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and |x(Out(F,))| grows exponentially for n — oo.

based on initial computations by up
to n < 11. Later strengthened by up to n < 100.

T n is not finitely presentable.
In topological terms, i.e. dim(Ha(7,)) = oo,

which implies that 7, does not have finitely-generated homology.
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Results: y(Out(F,)) # 0
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Theorem A MB-Vogtmann (2019)

X(Out(F,)) <0 foralln>2

(Out(F)) ~ — 1 I(n—3/2)

V21 log?n

as n — o0.
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Theorem A MB-Vogtmann (2019)

X(Out(F,)) <0 foralln>2
1 (n—13/2)
V21 log?n

as n — o0.

x(Out(Fn)) ~ -

which settles the initial conjecture by
Smillie-Vogtmann (1987). Immediate questions:

= Huge amount of unstable homology in odd dimensions.
e Only one odd-dimensional class known Bartholdi (2016).

e Where does all this homology come from?
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This Theorem A follows from an implicit expression for
X(Out(Fp)):
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This Theorem A follows from an implicit expression for
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This Theorem A follows from an implicit expression for
X(Out(Fp)):
Theorem B MB-Vogtmann (2019)

Vore NN ~ ) " a (~1)FT(N +1/2 — k) as N — oo
k>0

where Z axz¥ = exp Z X(Out(Fpi1))z"

k>0 n>0

= X(Out(F,)) are the coefficients of an asymptotic expansion.

e An analytic argument is needed to prove Theorem A from
Theorem B.

e In this talk: Focus on proof of Theorem B
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Harer-Zagier formula for x(MCG(S,))

Similar result for the mapping class group/moduli space of curves:

Bog

x(Mg) = x(MCG(Sg)) = m

g2

e Original proof by Harer and Zagier in 1986.
e Alternative proof using topological field theory (TFT) by

e Simplified proof by based on TFT's.
=
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Sketch of Kontsevich’s TFT proof
of the Harer-Zagier formula




Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.
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Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 — m1(Sg,n) = MCG(Sg,n+1) = MCG(Sg,n) — 1

= X(MCG(Sg.n11)) = x(Mg.nt1) = x(m1(Sg.n)) X(Mg.n)
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Step 1 of Kontsevich’s proof

Generalize from M, to Mg ,, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1 — m1(Sg,n) = MCG(Sg,n+1) = MCG(Sg,n) — 1

= X(MCG(Sg.n11)) = x(Mg.nt1) = x(m1(5¢.n)) X(Mg.n)

=2—-2g—n

19



Step 2 of Kontsevich’s proof

e Use a combinatorial model for Mg ,
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Step 3 of Kontsevich’s proof
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Step 3 of Kontsevich’s proof

B (_1)dim(a)
X(Mgn) = ZO_: | Stab(o))|
(1)l
B zr: | AutT|
ho(8T)=n
x(M)=2-2g—n

Used by Penner (1988) to calculate x(M,g) with Matrix models.
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:
Z X(Mg7")2272g7n

n!
g7n
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Step 4 of Kontsevich’s proof

Kontsevich's simplification:

XM& ,2-28-n (vt
Z e D D i
g,n ribbon graphs I'
ho(0)=n
X(F):2f2g7n

(=)Vel 6
= > |Aut G|~

graphs G

This is the perturbative series of a simple TFT:

— z(1+x eX d
o8 \/2772/ X)

Evaluation is classic (Stirling/Euler-Maclaurin formulas)

-y -

k>1
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Last step of Kontsevich’s proof

Z X(Mg,n) o Bk-i—l

n! k(k+1)

g’n
2—2g—n=k
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Last step of Kontsevich’s proof

X(Mgn) Bk
Z n!g k(k ill)

g’n
2—2g—n=k

= recover Harer-Zagier formula using the identity

X(Mg,n+1) = (2 —2g— n)X(Mg,n)
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Analogous proof strategy for
X(Out(F,)) using renormalized TFTs




Generalize from Out(F,) to A, s and from O, to O, s, Outer
space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)
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Generalize from Out(F,) to A, s and from O, to O, s, Outer
space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

1= Fy = Aps = Aps—1— 1

24



e Use a combinatorial model for G, s

25



e Use a combinatorial model for G, s

= graphs with a forest Smillie-Vogtmann (1987):

25



e Use a combinatorial model for G, s

= graphs with a forest Smillie-Vogtmann (1987):

A point in G, s can be associated with a pair of a graph G and a
forest f C G.

25



e Use a combinatorial model for G, s

= graphs with a forest Smillie-Vogtmann (1987):

A point in G, s can be associated with a pair of a graph G and a
forest f C G.

25



(_1)dim(o')
[Stab(0))|

X(An,s)

I
(]

g
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B (_1)dim(o')
X(Ans) = Stab(o)]

o
(—1)IE
> 2 (aung
graphs G forests fCG
with s legs

rank(m1(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(Ans) = Z ]AultG\ Z (_1)|Ef‘

graphs G forests fCG
with s legs
rank(7m1(G))=n
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Renormalized TFT interpretation MB-Vogtmann (2019):

X(Ans) = > ’AultG‘ Y (-yE

graphs G forests fCG
with s legs
rank(7m1(G))=n =7(G)

7 fulfills the identities 7(()) = 1 and

Z 7(g)(—1)/Eessl = 0 for all G # ()
gCG
g bridgeless

= 7 is an inverse of a character in a Connes-Kreimer-type
renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants x(A,s) are encoded in a renormalized TFT.
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TFT evaluation

Let T(z,x) = Z X(Ans)zt "=
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TFT evaluation

X
Let T(z,x) = Z X(An75)21 o
n,s>0
then 1= ! /eT(Z’X)dX
V2orz Jr

Using the short exact sequence, 1 — F, = A, — Aps—1 — 1
results in the action

1 X X X
1= ez(1+x—e )+3+T(—ze )dX
27z /]R
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TFT evaluation

X
Let T(z,x) = Z X(An75)21 o
n,s>0
then 1= ! /eT(Z’X)dX
V2orz Jr

Using the short exact sequence, 1 — F, = A, — Aps—1 — 1

results in the action

1 X X X
1= ez(1+x—e )+3+T(—ze )dX
27z /]R

where T(z) = >, 5; x(Out(Fpt1))z™".

This gives the implicit result in Theorem B.
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Short summary:

o y(Out(F,)) #£0

Open questions:

e The rapid growth of x(Out(F,)) indicates that there is much
unstable homology. What generates it?

e Missing analysis of the naive integral Euler characteristic: tbd

e Can the TFT analysis be explained with a duality between
MCG(Sg) and Out(F,)? Obvious candidate: Koszul duality

e Can renormalized TFT arguments also be used for other
groups? For instance RAAGs.
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