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Introduction I: Groups



Automorphisms of groups

• Take a group G

• An automorphism of G, ρ ∈ Aut(G ) is a bijection

ρ : G → G

such that ρ(x · y) = ρ(x) · ρ(y) for all x , y ∈ G

• Normal subgroup: Inn(G ) / Aut(G ), the inner automorphisms.

• We have, ρh ∈ Inn(G )

ρh :G → G ,

g 7→ h−1gh

for each h ∈ G .

• Outer automorphisms: Out(G ) = Aut(G )/ Inn(G )
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Automorphisms of the free group

• Consider the free group with n generators

Fn = 〈a1, . . . , an〉

E.g. a1a
−5
3 a2 ∈ Fn

• The group Out(Fn) is our main object of interest.
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Some properties of Out(Fn)

• Generated by

a1 7→ a1a2 a2 7→ a2 a3 7→ a3 . . .

and a1 7→ a−1
1 a2 7→ a2 a3 7→ a3 . . .

and permutations of the letters.

• The fundamental group of a graph is always a free group,

Out(Fn) = Out(π1(Γ))

for a connected graph Γ with n independent cycles.
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Mapping class group

• Another example of an outer automorphism group:

the mapping class group

• The group of homeomorphisms of a closed, connected and

orientable surface Sg of genus g up to isotopies

MCG(Sg ) := Out(π1(Sg ))
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Example: Mapping class group of the torus

MCG(T2) = Out(π1(T2))

The group of homeomorphisms T2 → T2 up to an isotopy:
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Introduction II: Spaces



How to study such groups?

How to study groups such as MCG(S) or Out(Fn)?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, . . . (1970-)

6



How to study such groups?

How to study groups such as MCG(S) or Out(Fn)?

Main idea

Realize G as symmetries of some geometric object.

Due to Stallings, Thurston, Gromov, . . . (1970-)

6



For the mapping class group: Teichmüller space

Let S be a closed, connected and orientable surface.

⇒ A point in Teichmüller space T (S) is a pair, (X , µ)
• A Riemann surface X .

• A marking : a homeomorphism µ : S → X .

MCG(S) acts on T (S) by composing to the marking:

(X , µ) 7→ (X , µ ◦ g−1) for some g ∈ MCG(S).
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For Out(Fn): Outer space

Idea: Mimic previous construction for Out(Fn).

Culler, Vogtmann (1986)

Let Rn be the rose with n petals.

⇒ A point in Outer space On is a pair, (G , µ)
• A connected graph G with a length assigned to each edge.

• A marking: a homotopy µ : Rn → G .

Out(Fn) acts on On by composing to the marking:

(Γ, µ) 7→ (Γ, µ ◦ g−1) for some g ∈ Out(Fn) = Out(π1(Rn)).
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O2

Put picture of Outer space here
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Examples of applications of Outer space

• The group Out(Fn)

• Moduli spaces of punctured surfaces

• Tropical curves

• Invariants of symplectic manifolds

• Classical modular forms

• (Mathematical) physics

:

Scalar QFT ∼ Integrals overOn /Out(Fn)

analogous to

2D Quantum gravity ∼ Integral overT (S)/MCG(S)
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Moduli spaces

• The quotient space Gn := On /Out(Fn) is called the moduli

space of graphs.

• Its cousin Mg = T (Sg )/MCG(Sg ) is the moduli space of

curves.

• Both can be used to study the respective groups.
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Summary of the respective groups and spaces

MCG(Sg ) Out(Fn)

acts freely and

properly on

Teichmüller space

T (Sg )

Outer space

On

Quotient X/G
Moduli space of curves

Mg

Moduli space of graphs

Gn
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Invariants



Algebraic invariants

• H•(Out(Fn);Q) ' H•(On /Out(Fn);Q) = H•(Gn;Q),

as On is contractible Culler, Vogtmann (1986).

⇒ Study Out(Fn) using Gn!

• One simple invariant: Euler characteristic

13
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Further motivation to look at Euler characteristic of Out(Fn)

Consider the abelization map Fn → Zn.

⇒ Induces a group homomorphism

1→ T n →

Out(Fn)→ Out(Zn)

︸ ︷︷ ︸
=GL(n,Z)

→ 1

• T n the ‘non-abelian’ part of Out(Fn) is interesting.

• By the short exact sequence above

χ(Out(Fn)) = χ(GL(n,Z))

︸ ︷︷ ︸
=0

χ(T n)

⇒ T n does not have finitely-generated homology if

χ(Out(Fn)) 6= 0.
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Conjectures

Conjecture Smillie-Vogtmann (1987)

χ(Out(Fn)) 6= 0 for all n ≥ 2

and |χ(Out(Fn))| grows exponentially for n→∞.

based on initial computations by Smillie-Vogtmann (1987) up

to n ≤ 11. Later strengthened by Zagier (1989) up to n ≤ 100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) =∞,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.

15



Conjectures

Conjecture Smillie-Vogtmann (1987)

χ(Out(Fn)) 6= 0 for all n ≥ 2

and |χ(Out(Fn))| grows exponentially for n→∞.

based on initial computations by Smillie-Vogtmann (1987) up

to n ≤ 11. Later strengthened by Zagier (1989) up to n ≤ 100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) =∞,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.

15



Conjectures

Conjecture Smillie-Vogtmann (1987)

χ(Out(Fn)) 6= 0 for all n ≥ 2

and |χ(Out(Fn))| grows exponentially for n→∞.

based on initial computations by Smillie-Vogtmann (1987) up

to n ≤ 11. Later strengthened by Zagier (1989) up to n ≤ 100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) =∞,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.

15



Conjectures

Conjecture Smillie-Vogtmann (1987)

χ(Out(Fn)) 6= 0 for all n ≥ 2

and |χ(Out(Fn))| grows exponentially for n→∞.

based on initial computations by Smillie-Vogtmann (1987) up

to n ≤ 11. Later strengthened by Zagier (1989) up to n ≤ 100.

Conjecture Magnus (1934)

T n is not finitely presentable.

In topological terms, i.e. dim(H2(T n)) =∞,

which implies that T n does not have finitely-generated homology.

Theorem Bestvina, Bux, Margalit (2007)

T n does not have finitely-generated homology.
15



Results: χ(Out(Fn)) 6= 0



Theorem A MB-Vogtmann (2019)

χ(Out(Fn)) < 0 for all n ≥ 2

χ(Out(Fn)) ∼ − 1√
2π

Γ(n − 3/2)

log2 n
as n→∞.

which settles the initial conjecture by

Smillie-Vogtmann (1987). Immediate questions:

⇒ Huge amount of unstable homology in odd dimensions.

• Only one odd-dimensional class known Bartholdi (2016).

• Where does all this homology come from?

16
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This Theorem A follows from an implicit expression for

χ(Out(Fn)):

Theorem B MB-Vogtmann (2019)

√
2πe−NNN ∼

∑
k≥0

ak(−1)kΓ(N + 1/2− k) as N →∞

where
∑
k≥0

akz
k = exp

∑
n≥0

χ(Out(Fn+1))zn



⇒ χ(Out(Fn)) are the coefficients of an asymptotic expansion.

• An analytic argument is needed to prove Theorem A from

Theorem B.

• In this talk: Focus on proof of Theorem B

17
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Analogy to the mapping class group



Harer-Zagier formula for χ(MCG(Sg ))

Similar result for the mapping class group/moduli space of curves:

Theorem Harer-Zagier (1986)

χ(Mg ) = χ(MCG(Sg )) =
B2g

4g(g − 1)
g ≥ 2

• Original proof by Harer and Zagier in 1986.

• Alternative proof using topological field theory (TFT) by

Penner (1988).

• Simplified proof by Kontsevich (1992) based on TFT’s.

⇒ Kontsevich’s proof served as a blueprint for χ(Out(Fn)).

18
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Sketch of Kontsevich’s TFT proof

of the Harer-Zagier formula



Step 1 of Kontsevich’s proof

Generalize from Mg to Mg ,n, the moduli space of surfaces of

genus g and n punctures.

We can ‘forget one puncture’:

1→ π1(Sg ,n)→

MCG(Sg ,n+1)→ MCG(Sg ,n)

→ 1

⇒ χ(MCG(Sg ,n+1)) = χ(Mg ,n+1) = χ(π1(Sg ,n))

︸ ︷︷ ︸
=2−2g−n

χ(Mg ,n)
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Step 2 of Kontsevich’s proof

• Use a combinatorial model for Mg ,n

⇒ Ribbon graphs Penner (1986)

Every point in Mg ,n can be associated with a ribbon graph Γ such

that

• Γ has n boundary components: h0(∂Γ) = n

• χ(Γ) = |VΓ| − |EΓ| = 2− 2g − n.

⇒ Γ can be interpreted as a surface of genus g with n punctures.
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Step 3 of Kontsevich’s proof

χ(Mg ,n) =
∑
σ

(−1)dim(σ)

| Stab(σ)|

=
∑

Γ
h0(∂Γ)=n

χ(Γ)=2−2g−n

(−1)|VΓ|

|Aut Γ|

Used by Penner (1988) to calculate χ(Mg ) with Matrix models.
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Step 4 of Kontsevich’s proof

Kontsevich’s simplification:∑
g ,n

χ(Mg ,n)

n!
z2−2g−n

=
∑
g ,n

∑
ribbon graphs Γ

h0(∂Γ)=n
χ(Γ)=2−2g−n

(−1)|VΓ|

|Aut Γ|
1

n!
zχ(Γ)

=
∑

graphs G

(−1)|VG |

|AutG |
zχ(G)

This is the perturbative series of a simple TFT:

= log
( 1√

2πz

∫
R
ez(1+x−ex )dx

)
Evaluation is classic (Stirling/Euler-Maclaurin formulas)

=
∑
k≥1

ζ(−k)

−k
z−k

22
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Last step of Kontsevich’s proof

∑
g ,n

2−2g−n=k

χ(Mg ,n)

n!
=

Bk+1

k(k + 1)

⇒ recover Harer-Zagier formula using the identity

χ(Mg ,n+1) = (2− 2g − n)χ(Mg ,n)
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Analogous proof strategy for

χ(Out(Fn)) using renormalized TFTs



Step 1

Generalize from Out(Fn) to An,s and from On to On,s , Outer

space of graphs of rank n and s legs.

Contant, Kassabov, Vogtmann (2011)

Forgetting a leg gives the short exact sequence of groups

1→ Fn → An,s → An,s−1 → 1

24
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Step 2

• Use a combinatorial model for Gn,s

⇒ graphs with a forest Smillie-Vogtmann (1987):

A point in Gn,s can be associated with a pair of a graph G and a

forest f ⊂ G .

(G , f )

25
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Step 3

χ(An,s) =
∑
σ

(−1)dim(σ)

| Stab(σ)|

=
∑

graphs G
with s legs

rank(π1(G))=n

∑
forests f⊂G

(−1)|Ef |

|AutG |
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Step 4

Renormalized TFT interpretation MB-Vogtmann (2019):

χ(An,s) =
∑

graphs G
with s legs

rank(π1(G))=n

1

|AutG |
∑

forests f⊂G
(−1)|Ef |

︸ ︷︷ ︸
=:τ(G)

τ fulfills the identities τ(∅) = 1 and∑
g⊂G

g bridgeless

τ(g)(−1)|EG/g | = 0 for all G 6= ∅

⇒ τ is an inverse of a character in a Connes-Kreimer-type

renormalization Hopf algebra. Connes-Kreimer (2001)

The group invariants χ(An,s) are encoded in a renormalized TFT.

27
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TFT evaluation

Let T (z , x) =
∑
n,s≥0

χ(An,s)z1−n x
s

s!

then 1 =
1√
2πz

∫
R
eT (z,x)dx

Using the short exact sequence, 1→ Fn → An,s → An,s−1 → 1

results in the action

1 =
1√
2πz

∫
R
ez(1+x−ex )+ x

2
+T (−zex )dx

where T (z) =
∑

n≥1 χ(Out(Fn+1))z−n.

This gives the implicit result in Theorem B.
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Summery/Questions/Outlook

Short summary:

• χ(Out(Fn)) 6= 0

Open questions:

• The rapid growth of χ(Out(Fn)) indicates that there is much

unstable homology. What generates it?

• Missing analysis of the naive integral Euler characteristic: tbd

• Can the TFT analysis be explained with a duality between

MCG(Sg ) and Out(Fn)? Obvious candidate: Koszul duality

• Can renormalized TFT arguments also be used for other

groups? For instance RAAGs.
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